
J Glob Optim (2010) 46:423–433
DOI 10.1007/s10898-009-9443-x

Minimal infeasible constraint sets in convex integer
programs

Wiesława T. Obuchowska

Received: 18 February 2008 / Accepted: 8 May 2009 / Published online: 24 May 2009
© Springer Science+Business Media, LLC. 2009

Abstract In this paper we investigate certain aspects of infeasibility in convex integer
programs, where the constraint functions are defined either as a composition of a convex
increasing function with a convex integer valued function of n variables or the sum of similar
functions. In particular we are concerned with the problem of an upper bound for the minimal
cardinality of the irreducible infeasible subset of constraints defining the model. We prove
that for the considered class of functions, every infeasible system of inequality constraints
in the convex integer program contains an inconsistent subsystem of cardinality not greater
than 2n , this way generalizing the well known theorem of Scarf and Bell for linear systems.
The latter result allows us to demonstrate that if the considered convex integer problem is
bounded below, then there exists a subset of at most 2n −1 constraints in the system, such that
the minimum of the objective function subject to the inequalities in the reduced subsystem,
equals to the minimum of the objective function over the entire system of constraints.

Keywords Feasibility · Infeasibility · Convex integer programming

1 Introduction

We consider the problem

minimize f0(x) (1)

subject to: x ∈ G = {x ∈ Z
n | fi (x) ≤ 0, i ∈ J = {1, 2, . . . , m}} (2)

where the functions fi are defined as a composition of a convex nondecreasing function and
a convex integer valued function. More precisely, fi (x) = hi (pi (x)), i ∈ J ∪ {0}, where
hi are convex increasing functions from R onto (−∞,∞) and pi (x) are convex integer
valued functions, or fi are defined as a sum of finitely many functions of the latter form,
although in this case all pi (x) are assumed to be bounded below over the set of remaining
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constraints and hi (x) are nondecreasing and into R. Some of the functions in (1)–(2) may be
in particular linear or convex quadratic. Literature in integer optimization [7–9,15,17,19] is
mostly devoted to linear integer programming, where variety of methods have been presented
and studied extensively. However, in the last several years there has been a growing interest
in nonlinear (particularly convex) integer programming, which led to new theoretical and
algorithmical developments, which on the other hand have produced applications of nonlin-
ear integer programming in various areas of scientific computing, engineering, management
science and operations research.

Since the problem (1)–(2) includes as a special case the linear integer programming, which
is known to be NP-hard, the same remains true about the convex integer problem (1)–(2),
which is generally intractable. The region defined by the relaxed system of inequalities will
be denoted as R, i.e.,

R = {x ∈ R
n | fi (x) ≤ 0, i ∈ J = {1, 2, . . . , m}}. (3)

It is well known that while the convexity in continuous optimization problems assures that
every local minimum point is a global minimum, it is not true for the integer programming
problem of the form (1)–(2) even if all functions fi , i ∈ J are convex (e.g., linear) and
objective function is convex quadratic (see, e.g., in [10]).

During formulation of the convex programming problem, particularly if it consists of a
large number of constraints and variables, it is often difficult to determine whether or not the
system is consistent. To the best of our knowledge, there are no known simple and efficient
techniques to determine whether the model involving nonlinear constraints and/or integral
constraints is correctly defined, i.e., whether the system is feasible (see [5,6,15]). Tradition-
ally the problem of determining whether the system in (3) is consistent has been handled by
methods devised to identify an initial feasible point [2,5]. They usually require the solution
of some nonlinear problem which has still the same structure as the original problem, and
contains one more constraint and variable.

In linear programs a common approach to analyzing infeasibility relies either on the iden-
tification of an irreducible infeasible subset of constraints (IIS), i.e., the set of constraints
that is infeasible, but for which any proper subset of constraints is feasible or on identifying
an infeasibility set (IN), i.e., a subset of constraints whose removal will transform the system
into a feasible one. The IIS isolation methods in linear programs were studied by Chinneck
and other authors in [4,5,8], and various properties of irreducible infeasible sets in quadratic
and faithfully convex systems were later analyzed in [11,12].

Determining whether an integer linear program is infeasible requires the full expansion
of a branch-and-bound tree with infeasibility being detected only when all of the leaf nodes
prove to be infeasible.

The main objective of this paper is to investigate certain aspects of infeasibility in convex
integer programs, in particular the problem of an upper bound for the minimal cardinality of
the irreducible infeasible sets.

Section 2 contains some auxiliary results necessary in the proofs of theorems presented
in Sect. 3, which include some results on attainability in constrained integer optimization
problem obtained in [14].

Section 3 presents certain aspects of infeasibility in convex integer programs, where the
constraint functions are defined either as a composition of a convex nondecreasing function
h and convex integer valued function p or as a sum of the above functions. The class of con-
vex integer valued functions includes in particular convex polynomials of n variables with
integer coefficients. We prove, for the considered class of functions, that every infeasible
system contains an inconsistent subsystem of at most 2n constraints, this way generalizing
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the result on irreducible infeasible subsets proved by Bell in [3] and Scarf in [18], for systems
of linear inequalities. The latter result allows us to demonstrate that if the problem (1)–(2)
is bounded below, then there exists a subsystem of the system (2), with at most 2n − 1 con-
straints, such that the minimum of the objective function subject to the inequalities in the
reduced subsystem equals to the minimum of the problem (1)–(2).

2 Auxiliary results

In this section we will provide several auxiliary results used in the proofs of the theorems pre-
sented in Sect. 3, namely results on attainability in integer constrained optimization problem
obtained in [14].

Definition 1 We say that a function f : R
n → R is integer valued if f (x) ∈ Z, for all

x ∈ Z
n .

The Theorems 1 and 2 and Corollary 1 below show that if the objective function is integer
valued or, more generally, it is represented as a composition of a nondecreasing function
with an integer valued function (or as a sum of functions of the latter form), then an optimal
solution of the constrained integer problem is attained over any subset of integers, provided
that the integer valued functions are bounded below over the feasible region.

Theorem 1 [14] Consider the problem

min{ f0(x)|x ∈ G = H ∩ Z
n},

where H is a subset of R
n and f0 is of the form

f0(x) = h(p(x)),

where p(x) is an integer valued function bounded from below on G, (G �= ∅) and h is a
nondecreasing function. Then the minimum of f0 over G is attained at some feasible integer
point.

Examples of integer valued functions p include (quasi-)convex polynomials with integer
coefficients (studied, e.g., in [1]), while the function f0(x) = 1

p (〈x, Bx〉) p
2 , where p ≥ 2,

and B is positive semidefinite with B ∈ Z
n×n , is an example of the function of the form

f0(x) = h(p(x)), defined in Theorem 1.
The following corollary, where the functions f0, h and p satisfy slightly modified assump-

tions follows directly from the last theorem.

Corollary 1 [14] Consider the problem

min{ f0(x)|x ∈ G = H ∩ Z
n},

where H is a subset of R
n and f0 is of the form f0(x) = h(p(x)), where h is a nondecreas-

ing function from R onto (−∞,+∞) or (−∞,+∞], and p : R
n → R is an integer valued

function. Then if f0 is bounded from below on the nonempty feasible region G, the infimum
of f0 over G is attained at some feasible integer point.

Since multivariable polynomials with integer coefficients belong to the class of integer
valued function, we obtain as a special case the following corollary.
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Corollary 2 If the problem (1)–(2), where fi (x) = hi (pi (x)), j ∈ J ∪ {0}, hi are nonde-
creasing functions from R onto (−∞,+∞) and pi : R

n → R are quasi-convex polynomials
with integer coefficients, is bounded below, then the objective function f0 attains its infimum
over the feasible region G.

Theorem 2 [14] Consider the problem min { f0(x)|x ∈ G = H ∩ Z
n}, where H is a subset

of R
n and f0 is of the form

f0(x) =
k∑

i=1

hi (pi (x)),

where hi , i = 1, 2, . . . , k, are nondecreasing convex functions from R to (−∞,+∞), and
pi (x), i = 1, 2, . . . , k are integer valued functions bounded from below on G. Then the
minimum of f0 over G is attained at some feasible integer point.

3 Generalization of the Theorem of Bell and Scarf to convex integer systems

It is well known that every inconsistent system of linear inequalities in n variables contains an
inconsistent subsystem of at most n + 1 inequalities. The result remains true for the systems
of convex inequalities, which follows directly from the Theorem of Helly [16], and it can be
stated as follows: if the system

fi (x) ≤ 0, i ∈ J = {1, 2, . . . , m} (4)

where fi (x), i ∈ J , are convex functions, is inconsistent, then there exists an infeasible
subset of constraints in (4) of cardinality not greater than n + 1.

Similar problem of finding an upper bound for the minimal cardinality of an infeasible sub-
set of inconsistent integer linear system has been studied in [3] by Bell and in [18] by Scarf,
who proved independently that every inconsistent system of linear inequality constraints
defined over the set of integers contains an infeasible subset of constraints of cardinality not
greater than 2n .

In this section we investigate the problem of an upper bound for the minimal cardinality
of the irreducible infeasible sets in the system of convex inequality constraints with integral
variables. We will consider the feasible region G defined over the set of integers, that is the
set G = R∩Z

n . Furthermore, we assume that if the functions pi (x) are convex polynomials,
then all their coefficients are integer (or rational).

In the Theorem 4 we will extend the result proved by Scarf [18] and Bell [3] for linear
systems to the systems of convex inequality constraints defined over the set of integer points.
That is, we will show that if a convex integer program in n variables has more than 2n linear
inequality constraints, then either some of the constraints are unnecessary or there is at least
one feasible integer point.

The symbol IIIS will be used to represent the irreducible integer infeasible subset, that is
the subset of constraints in (2), which is infeasible in the set of integers, but for which any
proper subset of constraints is feasible in Z

n . Thus the system of constraints with indices
IIIS\{i}, has an integer solution for any i ∈ IIIS.

Definition 2 We say that the functions fi : R
n → R, i ∈ J are Q-functions in the system

fi (x) ≤ 0, i ∈ J, x ∈ Z
n , if they are defined either as

1. fi (x) = hi (pi (x)) where hi are convex increasing functions from R onto (−∞,∞) and
pi (x) are convex integer valued functions or
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2. fi are of the form

fi (x) =
ki∑

j=1

hi
j (pi

j (x)),

where hi
j , j = 1, 2, . . . , ki , are nondecreasing convex functions from R to (−∞,+∞), and

pi
j (x), j = 1, 2, . . . , ki are convex integer valued functions bounded from below on the set

{x ∈ Z
n | fi (x) ≤ 0, i ∈ J \ {i}}.

Indeed it follows from the Definition 2, that in case the function fk is defined according
to part (1) of the definition then the function is a Q-function regardless of the status of the
remaining constraint functions in the system. Otherwise, that is if fk is defined according to
the second part of the definition, and fk is a Q-function in some subsystem of the system
fi (x) ≤ 0, i ∈ J , then fk is also a Q-function in the latter system, although the opposite
implication does not hold.

In case it is clear from the context in which system a function is considered, we will use
a shorter term a “Q-function” in the remaining part of the paper.

We will prove first the following theorem.

Theorem 3 Suppose that IIIS ⊂ J is an irreducible integer infeasible subset of the system
in (2). Assume that the functions fi , i ∈ IIIS are Q-functions in the system

fi (x) ≤ 0, i ∈ IIIS, x ∈ Z
n, (5)

and that the corresponding relaxed system

fi (x) ≤ 0, i ∈ IIIS, x ∈ R
n, (6)

is feasible. Then there ∃εi > 0, ∀i ∈ IIIS such that the system

fi (x) ≤ εi , x ∈ Z
n, i ∈ IIIS, (7)

has no integer solution and the systems (7) and

fi (x) < εi , x ∈ Z
n, i ∈ IIIS, (8)

are both irreducible infeasible sets.

Proof Suppose that the assumptions of the theorem are satisfied. Indeed the relaxed system

fi (x) < εi , x ∈ R
n, i ∈ IIIS,

will be feasible for any εi > 0, since the system (6) has a solution. For simplicity of notation
let us assume that IIIS = {1, 2, . . . , r}. Let us consider the following convex integer problem

min{ f1(x)|x ∈ Z
n, fi (x) ≤ 0, i ∈ IIIS\{1}} (9)

The feasible region of the problem defined in (9) is nonempty in the set of integers, which
follows from the fact that the system with constraints in IIIS is irreducible infeasible set.
Since the system (6) has no integer solution, then the problem (9) is bounded from below
(by 0). Thus by either the Corollary 1 or the Theorem 1 or 2 (depending on the form of the
function f1(x)), the infimum of f1 over the feasible region defined in (9) is attained at some
integer point, say x1. Indeed f1(x1) > 0, and we define ε1 = f1(x1)

2 . Clearly the new system

f1(x) ≤ ε1
(10)

fi (x) ≤ 0, i ∈ IIIS\{1}, x ∈ Z
n,
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has no integer solution and it can be easily shown that it is still an irreducible infeasible set.
Indeed, we have that for any l ∈ IIIS\{1}
{x ∈ Z

n | fi (x) ≤ 0, i ∈ IIIS\{l}} ⊂ {x ∈ Z
n | f1(x) ≤ ε1, fi (x) ≤ 0, i ∈ IIIS\{1, l}},

where the set on the left side of the inclusion is nonempty, i.e., removing any constraint
in (10) would change the status of the system into a feasible one. Continuing in the above
fashion, in the k-step we consider the problem

min fk(x)

s.t. fi (x) ≤ εi , i = 1, 2, . . . , k − 1

fi (x) ≤ 0, i = k + 1, . . . , r, x ∈ Z
n,

which has a nonempty feasible region and which has an optimal solution at some feasible
integer point xk , for which we define εk = fk (xk )

2 . By the construction process the system

fi (x) ≤ εi , i = 1, 2, . . . , k
(11)

fi (x) ≤ 0, i = k + 1, . . . , r, x ∈ Z
n,

is infeasible and for any τ ∈ {1, 2, . . . , k} and Gτ = {x ∈ Z
n | fi (x) ≤ 0, i ∈ IIIS\{τ }}

we have

Gτ ⊂ {x ∈ Z
n | fi (x) ≤ εi , i ∈ {1, 2, . . . , k}\{τ }, fi (x) ≤ 0, i = k + 1, . . . , r},

and for τ ∈ {k + 1, . . . , r}
Gτ ⊂ {x ∈ Z

n | fi (x) ≤ εi , i = 1, 2, . . . , k, fi (x) ≤ 0, i ∈ {k + 1, . . . , r} \ {τ }}.
Since the system (5) is an irreducible integer infeasible set, then Gτ �= ∅, which implies that
removing any constraint in the system (11) transforms this system into the feasible one, i.e.,
for all k ∈ IIIS the system (11) is an irreducible integer infeasible set. Thus, after r steps we
obtain in particular that the system (7) is an irreducible infeasible set.

To show that the system (8) is an irreducible integer infeasible set, we observe that for any
l ∈ IIIS the following inclusion holds for Al = {x ∈ Z

n | fi (x) ≤ 0, i∈IIIS\{l}, fl(x) > 0}
Al ⊂ {x ∈ Z

n | fi (x) < εi , i ∈ IIIS\{l}, fl(x) > 0}.
But Al �= ∅, since the system fi (x) ≤ 0, i ∈ IIIS, x ∈ Z

n is an irreducible integer infeasible
set. Therefore, the set on the right side of the latter inclusion, i.e., the set

Bl = {x ∈ Z
n | fi (x) < εi , i ∈ IIIS\{l}, fl(x) > 0}

is nonempty as well. Furthermore, it follows from the construction process of εi , i ∈ IIIS,
that there are no integer points in the region (7), which implies that the set

{x ∈ Z
n | fi (x) < εi , i ∈ IIIS\{l}, 0 < fl(x) ≤ εl},

is also empty. Thus, we have that Bl �= ∅, l ∈ IIIS, which implies that removing lth con-
straint from the system (8) changes the status of the system to the feasible one. This completes
the proof of the theorem. ��
Let us now consider the case when the system (6) is not necessarily irreducible integer
infeasible system. We will show that the following corollary follows from the Theorem 3.
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Corollary 3 Assume that the functions fi (x), i ∈ J , are Q-functions and that the system

fi (x) ≤ 0, i ∈ J, x ∈ R
n,

has a real solution but it does not have an integer solution. Then there ∃εi ≥ 0, ∀i ∈ J ,
where ε = (ε1, . . . , εm) �= 0 such that the system

fi (x) ≤ εi , i ∈ J,

has no integer solution.

Proof Let IIIS be any irreducible integer infeasible subset of the system with the constraints
with indices in J . Then applying Theorem 3 to this subsystem we obtain that ∃εi > 0, i ∈
IIIS, such that the system

fi (x) ≤ εi , x ∈ R
n, i ∈ IIIS,

fi (x) ≤ 0, i ∈ J\IIIS,

has no integer solution. ��
Theorem 4 Assume that the functions fi , i ∈ J are Q-functions. If the system

fi (x) ≤ 0, i ∈ J, x ∈ Z
n, (12)

is inconsistent, then there exists an infeasible subset of constraints in (12) of cardinality not
greater than 2n, that is

min |IIIS| ≤ 2n .

Proof To prove the theorem we will show that any irreducible integer infeasible subset of
constraints in (12) (denoted by IIIS), contains at most 2n constraints. We assume that the
system fi (x) ≤ 0, i ∈ IIIS, x ∈ R

n , is feasible, while the system fi (x) ≤ 0, i ∈ IIIS, x ∈
Z

n , has no integer solution. We note that such an assumption is justified, since in case the
corresponding relaxed system has no real solution, the converse of the Theorem of Helly
yields that min |IIIS| ≤ n + 1, which given that n + 1 ≤ 2n, ∀n ∈ N, would complete
the proof of the theorem. Suppose that εi , i ∈ IIIS are obtained by the construction pro-
cess described in the proof of the Theorem 3. Since εi > 0, i ∈ IIIS, then the system
fi (x) < εi , i ∈ IIIS, x ∈ R

n has a solution. Let x̄i ∈ Z
n, i ∈ IIIS be such that

fi (x̄i ) = min { fi (x)| fi (x) ≥ εi , f j (x) < ε j , j ∈ IIIS\{i}}. (13)

The feasible region of the problem (13) is nonempty, and the problem is bounded below.
Therefore, by either Theorem 1, 2 or Corollary 1 or 2 (depending on the form of the function
fi (x)), the function fi (x) attains its infimum at some feasible integer point, say x̄i . Indeed
all points x̄i , i ∈ IIIS are distinct, since each of them satisfies

fi (x̄i ) ≥ εi ,

f j (x̄i ) < ε j , j ∈ IIIS\{i}.
Suppose for simplicity of notation that IIIS = {1, 2, . . . , r}. Let us consider the convex

hull of the integer points x̄i , i = 1, 2, . . . , r , denoted as H0 = conv{x̄i , i = 1, 2, . . . , r},
and let us define the set Ĝ = {x ∈ R

n | fi (x) < fi (x̄i ), i ∈ IIIS}. It follows from the fact that
each x̄i is a solution to the problem (13) and convexity of Ĝ, that H0 \ {x̄1, x̄2, . . . , x̄r } ⊂ Ĝ.
Furthermore, since the set Ĝ has no integer points, the same is true about the set H0 \
{x̄1, x̄2, . . . , x̄r }. If r > 2n , then given that all points x̄i are distinct, for at least two points
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x̄κ , x̄τ , (x̄κ �= x̄τ ) in the set {x̄1, x̄2, . . . , x̄r }we have x̄κ ≡ x̄τ (modulo 2), (i.e., the coordinates
of x̄κ and x̄τ differ only by an even number). This shows that x̃ = x̄κ−x̄τ

2 is an integer point.

Thus x̃ + x̄τ = x̄κ−x̄τ

2 + x̄τ = x̄κ+x̄τ

2 , which indicates that the midpoint of the line segment

joining x̄κ and x̄τ is an integer point. On the other hand x̄κ+x̄τ

2 ∈ H0\{x̄1, x̄2, . . . , x̄r } ⊂ Ĝ,

a contradiction, since Ĝ contains no integer points. ��
Corollary 4 If there are 2n +q, (where q ≥ 1), constraints in the system defining the region

G = {x ∈ Z
n | fi (x) ≤ 0, i ∈ J },

(where the functions fi , i ∈ J are Q-functions), then either at least q constraints in the
system are redundant, or the set G contains at least one integer point.

Proof Follows from the Theorem 4. ��
The following theorem is a generalization of the result proved in Theorem 3 (more spe-

cifically of its converse).

Theorem 5 If there are more than κn, (where κ ≥ 2, κ ∈ N) necessary constraints in the
system defining the set

G = {x ∈ Z
n | fi (x) ≤ 0, i ∈ J },

(where the functions fi are Q-functions), then the set G contains at least κ − 1 integer points
located on the same straight-line.

Proof Without a loss of generality we can assume that all constraints with indices in J are
necessary, since otherwise the redundant constraints could be removed without affecting the
feasible region.

If κ = 2 the proof follows directly from Theorem 4. Suppose now that κ = 3. Since
3n > 2n then by Corollary 4 (using q = 1), the set G contains at least one integer point. If the
region G contains two or more integer points, the Theorem 5 holds. Thus, we can suppose that
the region G contains exactly one integer point, say x0. Then applying the argument outlined
in the proof of Theorem 3 allows us to conclude that there exist numbers εi > 0, i ∈ J ,
such that the region

fi (x) < εi , x ∈ Z
n, i ∈ J,

does not include any other integer point than x0. Furthermore, process similar to the one
presented in the proof of the Theorem 4 allows us to obtain m distinct integer points
x̄i , i = 1, 2, . . . , m, (where x̄i �= x0, i = 1, 2, . . . , m), whose convex hull (except for the
points x̄i , i = 1, 2, . . . , m) is contained in the open convex region Ĝ = {x ∈ R

n | fi (x) <

fi (x̄i ), i ∈ J }, containing no other integer points than x0.
Since there are 3n distinct vectors in Z

n with coordinates 0, 1, or 2, and m > 3n , then
there exist i, j , such that x̄i ≡ x̄ j (modulo 3). This means that the vectors 2

3 x̄i + 1
3 x̄ j and

1
3 x̄i + 2

3 x̄ j are integer points belonging to the open set Ĝ, a contradiction, since Ĝ contains
only one integer point.

In general, if the number of necessary constraints m is greater than κn , i.e., m > κn ,
assuming that the region G contains no more than κ − 2 integer points and using argument
similar to the one made above, will allow us to deduce that there exist i, j , such that x̄i ≡ x̄ j

(modulo κ). This will imply that the following κ − 1 vectors

1

κ
x̄i + κ − 1

κ
x̄ j ,

2

κ
x̄i + κ − 2

κ
x̄ j , . . . ,

κ − 1

κ
x̄i + 1

κ
x̄ j ,
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are integer points lying on the same straight-line (namely in the interior of the line segment
joining the points x̄i and x̄ j ), and that all are contained in the interior of the region Ĝ, which
by assumption contains no more than κ − 2 integer points, a contradiction. ��

Theorem 6 Suppose that the functions fi , i ∈ J , are Q-functions and that the problem

min{ f0(x)| fi (x) ≤ 0, i ∈ J, x ∈ Z
n},

is bounded below. Then

min{ f0(x)| fi (x) ≤ 0, i ∈ J, x ∈ Z
n} = min{ f0(x)| fi (x) ≤ 0, i ∈ I, x ∈ Z

n} (14)

for some subsystem fi (x) ≤ 0, i ∈ I of the system

fi (x) ≤ 0, i ∈ J, (15)

with no more than 2n − 1 inequality constraints, i.e., with |I | ≤ 2n − 1, and the minimum in
both problems in (14) are attained at some feasible integer point(s).

Proof Let f̃0 = min{ f0(x)| fi (x) ≤ 0, i ∈ J, x ∈ Z
n}. Then ∀ j ∈ N, the system

fi (x) ≤ 0, i ∈ J, f0(x) ≤ f̃0 − 1

j
(16)

has no integer solution. Therefore by Theorem 4, for all j ∈ N there is a subsystem of the sys-
tem (16) with at most 2n constraints having no integer solution. Since the system (15) has an
integer solution, each such subsystem contains the constraint f0(x) ≤ f̃0− 1

j . Hence there is a

subset I ⊂ J , satisfying |I | ≤ 2n −1 such that the system fi (x) ≤ 0, i ∈ I, f0(x) ≤ f̃0− 1
j

has no integer solution for all j ∈ N. Consequently fi (x) ≤ 0, i ∈ I, f0(x) < f̃0 has no
integer solution, which along with the fact that

min{ f0(x)| fi (x) ≤ 0, i ∈ J, x ∈ Z
n} ≥ min{ f0(x)| fi (x) ≤ 0, i ∈ I, x ∈ Z

n}

(since I ⊂ J ), implies the equality (14). Attainability of the minima in (14) follows from
either the Theorem 1, or Theorem 2 or from the Corollary 1, depending on the form of the
function f0. ��

We remark that the issue of boundedness of the problem (14) (i.e., of the problem
(1)–(2) was considered in [14], where we have shown in particular that in case the functions
fi , i ∈ J are either faithfully convex (satisfying some mild assumption) or quasi-convex
polynomials, the integer problem (1)–(2) is bounded below if and only if the corresponding
relaxed (continuous) problem is bounded below.

The following corollary follows from the Corollary 3.
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Corollary 5 Let us assume that fi (x), i ∈ J , are Q-functions, and let us define

G(ε) = {x ∈ Z
n | fi (x) ≤ εi , i ∈ J }.

for ε = (ε1, . . . , εm). Suppose that for arbitrary sequence {εk}, (εk �= 0) of nonnegative
vectors εk approaching zero, the sets G(εk) are nonempty, i.e., each of them contains an
integer point. Then the set G, (defined in (2)) is also nonempty in the set of integers.

Remark Corollary 5 similarly to the Theorem 3 can not be generalized to convex functions
of the form f (x) = h(p(x)) where h and g are not satisfying assumptions stated in the
definition of a Q-function, i.e., where h is neither onto R nor g is bounded below over the set
of remaining constraints. For example the set G0(εk) = {x ∈ Z|e−x ≤ εk}, is feasible for any
εk > 0, but is infeasible for εk = 0. Similarly, the function f (x) = e−x has an unattained
unconstrained infimum in the set of integers, equal 0. Indeed, the function f (x) = h(p(x))

does not belong to the class of convex functions considered in this paper, since h(x) = ex is
not onto R, and p(x) = −x is not bounded below on the set of integers.

We note that result analogous to Corollary 5 was earlier stated in [13] for systems of faithfully
convex and/or quasi-convex inequality constraints in case the variable x is continuous.
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